Search results for "TRANSMEMBRANE PROTEIN"

showing 10 items of 186 documents

Assembly of Transmembrane b-Type Cytochromes and Cytochrome Complexes

2016

Cytochromes are involved in charge-transfer reactions, and many cytochromes contain a transmembrane domain and are part of membrane-localized electron transfer chains. Protoporphyrin IX (heme b) is the first heme product in the tetrapyrrole/heme biosynthesis pathway. In contrast to c-type cytochromes, there is no need for a specialized machinery catalyzing covalent attachment of the heme molecule to a b-type apo-cytochrome, nor is the cofactor further modified, as in a-, d- and o-type cytochromes. Thus, formation of a holo-cytochrome is relatively simple for b-type cytochromes, and this class of proteins probably represents the most ancient members of transmembrane cytochromes. However, ass…

0301 basic medicine030102 biochemistry & molecular biologyHeme bindingbiologyCytochromeCytochrome bChemistryStereochemistryCytochrome cTransmembrane protein03 medical and health scienceschemistry.chemical_compoundTransmembrane domainHeme B030104 developmental biologybiology.proteinHeme
researchProduct

NMR Investigation of Structures of G-Protein Coupled Receptor Folding Intermediates

2016

Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significant…

0301 basic medicine10120 Department of ChemistryBioquímicaSaccharomyces cerevisiae Proteins1303 BiochemistryProtein ConformationStereochemistrySaccharomyces cerevisiaeBiochemistryMicelleRessonància magnètica nuclear1307 Cell BiologyG03 medical and health sciencesprotein coupled receptorGPCRProtein Domains540 Chemistry1312 Molecular BiologyAmino Acid SequenceNuclear Magnetic Resonance BiomolecularMolecular BiologyMicellesG protein-coupled receptorSequence Homology Amino Acid030102 biochemistry & molecular biologyChemistryProteïnes de membranaFoldingCell BiologyTransloconPeptide FragmentsTransmembrane proteinNMRFolding (chemistry)Crystallography030104 developmental biologyStructural biology10036 Medical ClinicProtein Structure and FoldingReceptors Mating FactorHelixProtein folding
researchProduct

Targeting the Endoplasmic Reticulum Unfolded Protein Response to Counteract the Oxidative Stress-Induced Endothelial Dysfunction

2017

In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the U…

0301 basic medicineAgingProgrammed cell deathendocrine systemOxidative phosphorylationReview Articlemedicine.disease_causeEndoplasmic ReticulumBiochemistryINITIATION-FACTOR 2-ALPHA03 medical and health sciencesProgrammed cell-deathSELECTIVE-INHIBITIONProgrammed cell-death;TXNIP/NLRP3 INFLAMMASOME ACTIVATION; MITOCHONDRIAL ELECTRON-TRANSPORT; SPONTANEOUSLY HYPERTENSIVE-RATS; INITIATION-FACTOR 2-ALPHA; CORONARY-ARTERY FUNCTION; ER STRESS; SELECTIVE-INHIBITION; MESSENGER-RNA; TRANSMEMBRANE PROTEINmedicineHumansEndothelial dysfunctionlcsh:QH573-671TXNIP/NLRP3 INFLAMMASOME ACTIVATIONSPONTANEOUSLY HYPERTENSIVE-RATSEndothelial Cellbusiness.industrylcsh:CytologyEndoplasmic reticulumfungiEndothelial CellsOxidative StreCell BiologyGeneral MedicineAdaptive responseMITOCHONDRIAL ELECTRON-TRANSPORTER STRESSmedicine.diseaseCell biologyOxidative Stress030104 developmental biologyProteostasisTRANSMEMBRANE PROTEINUnfolded protein responseUnfolded Protein ResponsebusinessMESSENGER-RNAOxidative stressCORONARY-ARTERY FUNCTIONHumanOxidative Medicine and Cellular Longevity
researchProduct

Repair of a Bacterial Small β-Barrel Toxin Pore Depends on Channel Width

2017

ABSTRACT Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+-dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae. In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca2+ influx, lysosomal exocytosi…

0301 basic medicineBacterial ToxinsAerolysinmedicine.disease_causeMicrobiologySerine03 medical and health sciencesNanoporesVirologyExtracellularmedicineHumansVibrio choleraeChemistryToxinPerforinCell MembraneQR1-502Transmembrane proteinCell biology030104 developmental biologyPhotobacterium damselaeVibrio choleraeCalciumCytolysinResearch ArticlemBio
researchProduct

The importance of transmembrane domain interactions in the viral control of apoptosis

2021

Viral control of apoptosis occurs through the expression of viral encoded anti-apoptotic B-cell lymphoma 2 (BCL2) analogs. These proteins are thought to restrain apoptosis by interacting with cellular BCL2 family members. We identified that protein-protein interactions between cellular and viral BCL2 transmembrane domains are crucial for the viral protein’s function.

0301 basic medicineCancer ResearchViral proteinChemistryvirusesmedicine.diseasemedicine.disease_cause030112 virologyTransmembrane proteinLymphomaCell biology03 medical and health sciencesTransmembrane domain030104 developmental biologyimmune system diseasesApoptosishemic and lymphatic diseasesAuthor’s ViewsmedicineMolecular Medicinebiological phenomena cell phenomena and immunityneoplasmsFunction (biology)Molecular & Cellular Oncology
researchProduct

Mg2+ homeostasis and transport in cyanobacteria – at the crossroads of bacterial and chloroplast Mg2+ import

2018

Abstract Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes…

0301 basic medicineChloroplastsClinical BiochemistryCyanobacteriaPhotosynthesisBiochemistry03 medical and health sciencesHomeostasisMagnesiumElectrochemical gradientMolecular BiologyIon TransportBacteria030102 biochemistry & molecular biologybiologyChemistrySynechocystisMembrane Transport ProteinsMembrane transportbiology.organism_classificationTransmembrane proteinChloroplast030104 developmental biologyMembraneThylakoidBiophysicsBiological Chemistry
researchProduct

Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line

2014

International audience; Olfactory receptors (ORs) play a crucial role in detecting the odorant molecules present in the surrounding environment. These receptors, which belong to class A G-protein-coupled receptors, constitute the largest transmembrane protein family in the human genome. Functional studies showed that the OR family includes members that are able to respond to a large set of odorants and members that are activated by a relatively small number of related odorants. To understand the molecular mechanisms that govern the receptor-ligand interactions, we overexpressed the human OR hOR1A1 in a stable tetracycline-inducible HEK293S cell line. This receptor was engineered by insertin…

0301 basic medicineCircular dichroismbindingpurification[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionRecombinant Fusion ProteinsGene Expressionodorant receptorsBiologyReceptors OdorantEpitope03 medical and health sciencesRecombinant expression[SDV.IDA]Life Sciences [q-bio]/Food engineeringmedicineOlfactory receptorHumans[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringReceptorSite-directed mutagenesisagonistLigand bindingComputingMilieux_MISCELLANEOUSbeta(2)-adrenergic receptorOlfactory receptortechnology industry and agricultureStructure[SDV.IDA] Life Sciences [q-bio]/Food engineeringTransmembrane proteinprotein-coupled receptors[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition030104 developmental biologymedicine.anatomical_structureHEK293 CellsBiochemistryCell culturehigh-level expressionmembrane-proteinsBeta-2 adrenergic receptoractivationsite-directed mutagenesis[SDV.AEN]Life Sciences [q-bio]/Food and NutritionBiotechnology
researchProduct

Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidati…

2019

Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregu…

0301 basic medicineClinical BiochemistryLFQ Label-free quantificationLETM Leucine zipper and EF-hand containing transmembrane proteinmedicine.disease_causeBiochemistryCHX Cycloheximide0302 clinical medicineBNIP3 Bcl-2 interacting protein 3RAPA RapamycinPIK3C3 Class III PI3‐kinasePhosphorylationlcsh:QH301-705.5Neuronslcsh:R5-920PolyUB PolyubiquitinChemistryBAG3OPA1 Optic atrophy 1TOR Serine-Threonine KinasesWIPI1 WD repeat domain phosphoinositide-interacting protein 1ATG Autophagy relatedTFEB Transcription factor EBCell biologyMitochondriasiRNA Small interfering RNADLP1 Dynamin-like protein 1LAMP1 Lysosomal‐associated membrane protein 1PURO Puromycinlcsh:Medicine (General)Protein homeostasisResearch PaperBafA1 Bafilomycin A1LAMP2 Lysosomal‐associated membrane protein 2Proteasome Endopeptidase ComplexRAB18 Member RAS oncogeneTUB TubulinLC3 Light chain 3 proteinOxidative phosphorylationBAG3CTSD Cathepsin DModels BiologicalCell Line03 medical and health sciencesDownregulation and upregulationMacroautophagymedicineAutophagyHumansAdaptationBAG1 Bcl-2-associated athanogene 1BECN1 Beclin1PI3K/AKT/mTOR pathwayAdaptor Proteins Signal TransducingTEM Transmission electron microscopyHsp70 Heat shock protein 70Organic ChemistryAutophagyAutophagosomesmTOR Mammalian target of rapamycinHsp70Oxidative Stress030104 developmental biologyProteostasislcsh:Biology (General)CV CanavanineBAG3 Bcl-2-associated athanogene 3MTT (3-(45-Dimethylthiazol-2-yl)-25-Diphenyltetrazolium Bromide)Apoptosis Regulatory ProteinsLysosomes030217 neurology & neurosurgeryOxidative stressRedox Biology
researchProduct

Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase

2020

Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplas…

0301 basic medicineCytoplasmGpA glycophorin AC4DC C4-dicarboxylateCL cross-linkingpiston-typeMBP maltose-binding proteinBiochemistry03 medical and health sciencesProtein DomainsDcuSEscherichia coli(Gly)xxx(Gly) motifMolecular Biologysensor kinasefumarate030102 biochemistry & molecular biologyChemistryEscherichia coli ProteinsCell MembraneHistidine kinaseGene Expression Regulation BacterialCell BiologyPeriplasmic spacelinkerTransmembrane proteinoxidative Cys cross-linkingTransmembrane domain030104 developmental biologyMembrane proteinProtein kinase domainHelixBiophysicsProtein MultimerizationProtein Kinasestransmembrane signalingLinkerResearch ArticleTM transmembraneJournal of Biological Chemistry
researchProduct

The expanding functional roles and signaling mechanisms of adhesion G protein-coupled receptors.

2019

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well…

0301 basic medicineG proteinGeneral Science & TechnologyArticleGeneral Biochemistry Genetics and Molecular BiologyReceptors G-Protein-Coupledimmunology03 medical and health sciencesG-Protein-Coupled0302 clinical medicineHistory and Philosophy of ScienceReceptorsExtracellularAnimalsHumanscancerstructural biologymechanosensationReceptordevelopmentG protein-coupled receptorChemistryGeneral NeuroscienceneurobiologySciences bio-médicales et agricolesTransmembrane proteinCell biology030104 developmental biologyStructural biologyGeneric health relevanceSignal transductionadhesion G protein-coupled receptor030217 neurology & neurosurgeryIntracellularsignal transductionSignal Transduction
researchProduct